Understanding neural networks with reproducing kernel Banach spaces

نویسندگان

چکیده

Characterizing the function spaces corresponding to neural networks can provide a way understand their properties. In this paper we discuss how theory of reproducing kernel Banach be used tackle challenge. particular, prove representer theorem for wide class that admit suitable integral representation and include one hidden layer possibly infinite width. Further, show that, ReLU activation functions, norm in space characterized terms inverse Radon transform bounded real measure, with given by total variation measure. Our analysis simplifies extends recent results [45], [36], [37].

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Properties of Reproducing Kernel Banach and Hilbert Spaces

This paper is devoted to the study of reproducing kernel Hilbert spaces. We focus on multipliers of reproducing kernel Banach and Hilbert spaces. In particular, we try to extend this concept and prove some related theorems. Moreover, we focus on reproducing kernels in vector-valued reproducing kernel Hilbert spaces. In particular, we extend reproducing kernels to relative reproducing kernels an...

متن کامل

Reproducing Kernel Banach Spaces with the l1 Norm

Targeting at sparse learning, we construct Banach spaces B of functions on an input space X with the following properties: (1) B possesses an l norm in the sense that B is isometrically isomorphic to the Banach space of integrable functions on X with respect to the counting measure; (2) point evaluations are continuous linear functionals on B and are representable through a bilinear form with a...

متن کامل

Sampling Expansions in Reproducing Kernel Hilbert and Banach Spaces

We investigate the construction of all reproducing kernel Hilbert spaces of functions on a domain Ω ⊂ R that have a countable sampling set Λ ⊂ Ω. We also characterize all the reproducing kernel Hilbert spaces that have a prescribed sampling set. Similar problems are considered for reproducing kernel Banach spaces, but now with respect to Λ as a p-sampling set. Unlike the general p-frames, we pr...

متن کامل

Real reproducing kernel Hilbert spaces

P (α) = C(α, F (x, y)) = αF (x, x) + 2αF (x, y) + F (x, y)F (y, y), which is ≥ 0. In the case F (x, x) = 0, the fact that P ≥ 0 implies that F (x, y) = 0. In the case F (x, y) 6= 0, P (α) is a quadratic polynomial and because P ≥ 0 it follows that the discriminant of P is ≤ 0: 4F (x, y) − 4 · F (x, x) · F (x, y)F (y, y) ≤ 0. That is, F (x, y) ≤ F (x, y)F (x, x)F (y, y), and this implies that F ...

متن کامل

Separability of reproducing kernel spaces

We demonstrate that a reproducing kernel Hilbert or Banach space of functions on a separable absolute Borel space or an analytic subset of a Polish space is separable if it possesses a Borel measurable feature map.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied and Computational Harmonic Analysis

سال: 2023

ISSN: ['1096-603X', '1063-5203']

DOI: https://doi.org/10.1016/j.acha.2022.08.006